
The R Package for Jackknife Confidentiality Protection
Final Report for ESSNet
Jobst Heitzig, December 2009

Introduction
In this part of the project, we developed an open source software package named “condense” for the
likewise open source R statistical computing environment (see http://www.r-project.org).

The “condense” package is a reference implementation of basic methods of statistical analysis with
included Jackknife confidentiality protection (see J. Heitzig, “The 'Jackknife' method:
Confidentiality protection for complex statistical analyses”, Work session on statistical data
confidentiality, UNECE, Geneva (2005),
http://www.unece.org/stats/documents/ece/ces/ge.46/2005/wp.39.e.pdf). It covers the most
important univariate analysis methods such as frequencies, sums, other moment- and quantile-based
statistics, Student's t test, robust measures of location, scale and shape, etc., putting some focus on
explorative methods.

This work is also related to the more general open source software development project
“ConDEnSE” (see J. Heitzig, “ConDEnSE: towards an open source remote analysis system with
jackknife confidentiality protection”, 56th Session of the International Statistical Institute, Lisboa
(2007), http://condense.sourceforge.net/stcpm02_heitzig.pdf) which plans to use the developed R
package in its back-end. In particular, we also use the ConDEnSE code repository for versioning
(see http://condense.svn.sourceforge.net/viewvc/condense/)

Quick start guide

Installation

• Install the open source R statistical computing environment with version 2.9.2 or later from
http://www.r-project.org

• Download the “condense” package tarball (currently condense_1.0_0.tar.gz) from
http://condense.svn.sourceforge.net/viewvc/condense/tags/condense_1.0_0/condense_1.0-
0.tar.gz

• On the command line, cd to the location with the downloaded tarball, start R and call
install.packages("condense_1.0_0.tar.gz")

Test

• Create on localhost a MySQL database named “condense”, a MySQL user named
“condense” with the password “condense”, and give the user full permissions for the
database.

• In R, call require(condense), then demo(condense2)

• If no local MySQL is available, you can use any other MySQL database for which you have
enough permissions by connecting to it via
mysql.connection <- dbConnect(dbDriver("MySQL"), host="...",
user="...", password="...", dbname="...")
and then calling demo(condense2). See the documentation for the standard R package

http://www.r-project.org/
http://condense.svn.sourceforge.net/viewvc/condense/tags/condense_1.0_0/condense_1.0-0.tar.gz
http://condense.svn.sourceforge.net/viewvc/condense/tags/condense_1.0_0/condense_1.0-0.tar.gz
http://www.r-project.org/
http://condense.svn.sourceforge.net/viewvc/condense/
http://condense.sourceforge.net/stcpm02_heitzig.pdf
http://www.unece.org/stats/documents/ece/ces/ge.46/2005/wp.39.e.pdf

RMySQL for details about dbConnect().

Online help

In R, you get the online help by calling help(condense) or help(jk.means).

Concept
The computational statistics community largely uses the open source R statistical computing
environment to develop, test, and share new statistical analysis methods and algorithms for its
powerful, well-structured and transparent programming language and its interfaces to most common
data storage systems (see, e.g., Rizzi, Alfredo and Vichi, Maurizio (Eds.): “COMPSTAT 2006 -
Proceedings in Computational Statistics”, 17th Symposium Held in Rome, Italy (2006),
http://www.springer.com/statistics/computational/book/978-3-7908-1708-9).

In this project, R was chosen as a development framework not only because of these reasons but
also to make sure that the resulting software will be available freely to everyone and in the hope to
stimulate some further cooperation with members of the computational statistics community.

As R is a functional language, the package consists of a top-level function jk.means and of a
number of bottom-level functions containing basic functionality common to this and other analyses
that might be implemented later as top-level functions, and for performing the various steps of
Jackknife confidentiality protection. While the top-level functions build the interface for both the
users of interactive R sessions and for graphical front-ends such as the ConDEnse front-end, the
latter set of functions is designed for maximal extensibility to allow contributers of new statistical
analysis methods to develop “safe” versions of their methods by combining them with the packages
helper functions.

However, functionality and calling syntax of the top-level function were also designed in a certain
analogy to the common procedures MEANS and UNIVARIATE of the SAS(R) language, since it
was felt that these SAS(R) procedures more or less cover those univariate methods most important
for end-users, and since for some them and other SAS(R) procedures, already a prototypical
implementation of the Jackknife method had been developed in form of SAS(R) macros.

The basic calling syntax of the top-level functions is exemplified by a the following call to the
function “jk.means”:

jk.means (

connection = some.mysql.database.connection
input.table = “person”,
analyse = list (

list (name = “age”, quartiles = c (0,20,40,60,Inf)),
list (name = “income”, quartiles = c (0,1e3,1e4,1e5,1e7))

),
group.by = list (

list (name = “gender”, label = “gender”, groups = list (
list (level = 1, label = “all”, condition = “TRUE”),
list (level = 2, label = “female”, condition = “gender='f'”),
list (level = 2, label = “male”, condition = “gender='m'”)

))
),
where = “income>0”,
secret = “some constant string kept secret from users”
return.format = “ds”,

http://www.springer.com/statistics/computational/book/978-3-7908-1708-9?detailsPage=otherBooks&CIPageCounter=CI_MORE_BOOKS_BY_AUTHOR0

mu0 = 0.0,
alpha.notch = 0.025

)

All function arguments are given by keyword parameters and might be nested structures using the
common R constructs list() and c(). All parameters except the last two are designed to be common
with other top-level functions that might be implemented later.

The remaining parameters are specific to one this top-level function.

The return value of a top-level function is usually a multi-dimensional result table, returned as
either a nested list of headers and a stream of data cells (“mudit” format), or as a linearized data
frame containing a row for each cell of the multi-dimensional result table (“df” format). In the
above example, these two return formats would return a four-dimensional result table with
59*2*2*3=708 cells like this:

“mudit” format:

list (list (
type = “mudit”,
dims = c (

“statistics”,
“analysed column”,
“quality”,
“gender”

),
groups = list (

list (list (level = 1, label = “no. of non-null values”),
… [57 other statistics],
list (level = 1, label = “Crow-Siddiqui's kurtosis”)),

list (list (level = 1, label = “age”),
list (level = 1, label = “income”)),

list (list (level = 1, label = “approx. value”),
list (level = 1, label = “approx. protection error”)),

list (list (level = 1, label = “all”),
list (level = 2, label = “female”),
list (level = 2, label = “male”))

),
stream = c (123.4, 62.3, 61.2, … [702 more values], 0.0234, 0.0123, 0.0135)

))

“df” format:

stat label column quality gender result

n no. of non-null values age approx. value all 123.4

n no. of non-null values age approx. value female 62.3

n no. of non-null values age approx. value male 61.2

… [702 more rows]

cskurt Crow-Siddiqui's kurtosis income approx. protection error all 0.0234

cskurt Crow-Siddiqui's kurtosis income approx. protection error female 0.0123

cskurt Crow-Siddiqui's kurtosis income approx. protection error male 0.0135

Implementation details

Construction of replacement values

For each observation and each analysis variable x, two independent pseudo-random replacement
values r1,r2 from a distribution determined by the specified protection quartiles q0,q1,q2,q3,q4 are
computed as deterministic functions of

• the “secret” specified as a parameter to the top-level function call and

• the protection quartiles q0,q1,q2,q3,q4 specified on the top-level function call.

In particular, r1,r2 disclose nothing about any true values of x. This is done in the following way:

• For each observation, the MD5 hash of the concatenation of the secret and the value of x is
split into four 8-digit hexadecimal numbers, giving four independently uniformly distributed
pseudo-random integers u1a,u1b,u2a,u2b in [0, 168–1].

• Using the Box-Muller formula, (u1a,u1b) and (u2a,u2b) are transformed into two
independent standard normal variates n1,n2.

• Depending on q0,q1,q2,q3,q4, those are further transformed into independent variates r1,r2,
where the constants a,b,c,d are determined so that the resulting quartiles match the
prescribed ones:

◦ if q0 = –Inf and q4 = Inf, then the normal bell shape is skewed by putting
ri = a + b*ni + c*sqrt(1 + ni²)

◦ if q0 > –Inf but q4 = Inf, then ri is shifted log-normal:
ri = q0 + exp(a + b*ni), where q1 is ignored

◦ if q0 = –Inf but q4 < Inf, then –ri is shifted log-normal:
ri = q4 – exp(a + b*ni), where q3 is ignored

◦ if q0 > –Inf and q4 < Inf, then ri is shifted “tan-normal”:
ri = a + b*atan(c + d*ni),
where either q1 or q3 is ignored depending on whether q2 is nearer to q0 or to q4.

These replacement values r1,r2 can be used to compute variants of the value of the requested
statistics f that arise when one value of x is replaced by either r1 or r2.

Computation of true results and extreme variants

The computation of the true results of all statistics f and of the extreme variants of f that might arise
by removing one value of x or replacing it with some replacement value from the protection
distribution is done in the following steps in jk.means:

• The true power sums n,sum,uss,us3,us4 for all groups and all x are computed from those
observations in the data that meet the where condition, and the true values of the other
purely moment-based statistics (such as mean, stddev, etc.) are computed from these power
sums.

• For each observation, the values of the above statistics f are computed that arise when only
this observation was removed, and the minimum and maximum values f_l,f_u of those
variants are determined for each group.

• All order statistics x(i) needed for the estimation of the needed quantiles p1,p2,...,p98,p99
are determined as well as their lower and upper neighbours. For each needed quantile a
(=0.01, 0.02, …, 0.99), find that integer b and that c in [0,1) such that a*(n – 1) = b + c, and

◦ estimate the a-quantile by q = (1 – c)*x(b) + c*x(b + 1),

◦ determine its minimum variant q_l = (1 – c)*x(b – 1) + c*x(b) and

◦ its maximum variant q_u = (1 – c)*x(b + 1) + c*x(b + 2).

(Note that the removal or replacement of a single value can move q only inside [q_l,q_u].
For the estimation of min and max, we use b = 2 and b = n – 1 instead of b = 1 and b = n,
respectively, in order to be able to compute their minimum and maximum variants. For this
reason, these two statistics are called min2 and max2 and are reported as “2nd smallest” and
“2nd largest” value instead of “minimum” and “maximum”)

• From the statistics f and their extreme variants f_l,f_u determined so far, now the true values
of other derived statistics (such as trimean, range, etc.) and bounds for their extreme variants
are computed by plugging in f_l and f_u. For example:

◦ range = max2 – min2

◦ range_l = min(max2_l – min2, max2 – min2_u)

◦ range_u = max(max2_u – min2, max2 – min2_l)

Construction of reported approximate values and approximate protection errors

Given the true result f and the extreme variants f_l and f_u of some statistics f for some analysis
column x in some group g, put d = max(| f_u – f |, | f – f_l |). The

• reported approximate value a of f and the

• reported approximate protection error e

are then computed as a = f + d*n1 and e = d*w, where n1 is a pseudo-random number from the
standard normal distribution and w is a pseudo-random number of the Weibull(4,1.37) distribution.
Because |n1| < w with 75.89% probability, |n1| < 2*w with 95.77% probability, and |n1| < 3*w with
at least 99% probability, the user can construct from the reported values a and e

• a 75% confidence interval [a – e, a + e] for f,

• a 95% confidence interval [a – 2*e, a + 2*e] for f, and

• a 99% confidence interval [a – 3*e, a + 3*e] for f.

In this sense, e serves the same purpose for the sample value of f as the standard error serves for the
population value of f.

In order to protect confidentiality from certain disclosure attempts, n1 and w are computed as a
deterministic functions of

• the “secret” specified as a parameter to the top-level function call,

• the values of x in g,

• the replacement values r1, r2 of x in g,

• the name of the statistics f .

A disclosure attempt which averages the results of repeated identical queries or queries with only
infinitesimally changed where conditions will get each time the same result and will thus not be
able to reduce the protection error. A disclosure attempt which “scans” the real line for observations

by submitting a series of queries which only differ in a varying where condition of the form “x < c”
for varying c will notice changes in the result whenever c crosses a true value of x but also
whenever c crosses a replacement value for x; such an attempt would thus at most find a set of 3n
values among which the n true values are, but would not be able to identify those true values.

n1 and w are computed in the following way:

• As above, for each observation, the MD5 hash of the concatenation of the secret and the
value of x is split into four 8-digit hexadecimal numbers, giving four independently
uniformly distributed pseudo-random integers u1a,u1b,u2a,u2b in [0, 168–1].

• Let s be the sum of u1a – 168/2 for all observations that meet the where condition, plus the
sum of all u1b – 168/2 for all observations that meet the where condition with r1 instead of
x, plus the sum of all u1b – 168/2 for all observations that meet the where condition with r2
instead of x.

• Compute from the MD5 hash of the concatenation of s with the name of f four
independently uniformly distributed pseudo-random integers v1,v1,v2,v2 in [0, 168–1].

• Use the Box-Muller formula to compute n1 from v1 and v2, and put
w = 1.37 * (22.180709777918 – log(v3))1/4.

	The R Package for Jackknife Confidentiality Protection
Final Report for ESSNet
	Introduction
	Quick start guide
	Installation
	Test
	Online help

	Concept
	Implementation details
	Construction of replacement values
	Computation of true results and extreme variants
	Construction of reported approximate values and approximate protection errors

